Descriptive set theory and geometrical paradoxes II

Andrew Marks, joint with Spencer Unger

UCLA

Borel circle squaring

Theorem (M.-Unger, 2016)

Tarski's circle squaring problem can be solved using Borel pieces. More generally, suppose $k \geq 1$ and $A, B \subseteq \mathbb{R}^{k}$ are bounded Borel sets such that $\lambda(A)=\lambda(B)>0, \Delta(\partial A)<k$, and $\Delta(\partial B)<k$. Then A and B are equidecomposable by translations using Borel pieces.
λ is Lebesgue measure, and Δ is upper Minkowski dimension.

Borel circle squaring

Theorem (M.-Unger, 2016)

Tarski's circle squaring problem can be solved using Borel pieces. More generally, suppose $k \geq 1$ and $A, B \subseteq \mathbb{R}^{k}$ are bounded Borel sets such that $\lambda(A)=\lambda(B)>0, \Delta(\partial A)<k$, and $\Delta(\partial B)<k$. Then A and B are equidecomposable by translations using Borel pieces.
λ is Lebesgue measure, and Δ is upper Minkowski dimension.
Fix k and such sets A and B.

Laczkovich's ideas: Work in the torus

We may scale and translate A and B so that they lie in $[0,1 / 2)^{k}$.

Laczkovich's ideas: Work in the torus

We may scale and translate A and B so that they lie in $[0,1 / 2)^{k}$.
View A and B as subsets of the k-torus $\mathbb{T}^{k}=(\mathbb{R} / \mathbb{Z})^{k}$ which we identify with $[0,1)^{k}$. Then A and B are equidecomposable by translations as subsets of the torus if and only if they are equidecomposable by translations in \mathbb{R}^{k}. (Using the same set of pieces).

Laczkovich's ideas: Work in the torus

We may scale and translate A and B so that they lie in $[0,1 / 2)^{k}$.
View A and B as subsets of the k-torus $\mathbb{T}^{k}=(\mathbb{R} / \mathbb{Z})^{k}$ which we identify with $[0,1)^{k}$. Then A and B are equidecomposable by translations as subsets of the torus if and only if they are equidecomposable by translations in \mathbb{R}^{k}. (Using the same set of pieces).

Fix a sufficiently large d and randomly pick $u_{1}, \ldots, u_{d} \in \mathbb{T}^{k}$. Obtain an action a of \mathbb{Z}^{d} on \mathbb{T}^{k} by letting the i th generator of \mathbb{Z}^{d} act via u_{i}.

$$
\left(n_{1}, \ldots, n_{d}\right) \cdot x=n_{1} u_{1}+\ldots+n_{d} u_{d}+x
$$

Laczkovich shows A and B are a-equidecomposable.

Laczkovich's ideas: Discrepancy theory

If $F \subseteq \mathbb{T}^{k}$ is finite and $C \subseteq \mathbb{T}^{k}$ is Lebesgue measurable, then the discrepancy of F with respect to C is

$$
D(F, C)=\left|\frac{|F \cap C|}{|F|}-\lambda(C)\right|
$$

Laczkovich's ideas: Discrepancy theory

If $F \subseteq \mathbb{T}^{k}$ is finite and $C \subseteq \mathbb{T}^{k}$ is Lebesgue measurable, then the discrepancy of F with respect to C is

$$
D(F, C)=\left|\frac{|F \cap C|}{|F|}-\lambda(C)\right|
$$

Let $R_{N}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: 0 \leq n_{i}<N\right\}$ the "square" of side length N.

Laczkovich's ideas: Discrepancy theory

If $F \subseteq \mathbb{T}^{k}$ is finite and $C \subseteq \mathbb{T}^{k}$ is Lebesgue measurable, then the discrepancy of F with respect to C is

$$
D(F, C)=\left|\frac{|F \cap C|}{|F|}-\lambda(C)\right|
$$

Let $R_{N}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: 0 \leq n_{i}<N\right\}$ the "square" of side length N.

Lemma (Laczkovich 1992 building on Schmidt, Niederreiter-Wills)

For A, B and the action as above, $\exists \epsilon>0$ and M such that

$$
D\left(R_{N} \cdot x, A\right) \leq M N^{-1-\epsilon} \text { and } D\left(R_{N} \cdot x, B\right) \leq M N^{-1-\epsilon} .
$$

Laczkovich's ideas: Discrepancy theory

If $F \subseteq \mathbb{T}^{k}$ is finite and $C \subseteq \mathbb{T}^{k}$ is Lebesgue measurable, then the discrepancy of F with respect to C is

$$
D(F, C)=\left|\frac{|F \cap C|}{|F|}-\lambda(C)\right|
$$

Let $R_{N}=\left\{\left(n_{1}, \ldots, n_{d}\right) \in \mathbb{Z}^{d}: 0 \leq n_{i}<N\right\}$ the "square" of side length N.

Lemma (Laczkovich 1992 building on Schmidt, Niederreiter-Wills)

For A, B and the action as above, $\exists \epsilon>0$ and M such that

$$
D\left(R_{N} \cdot x, A\right) \leq M N^{-1-\epsilon} \text { and } D\left(R_{N} \cdot x, B\right) \leq M N^{-1-\epsilon} .
$$

Roughly, every square of side length N in the action contains close to $\lambda(A) N^{d}$ elements of both A and B.

Flows in graphs

Suppose G is a graph (symmetric irreflexive relation) on a vertex set X. If $f: X \rightarrow \mathbb{R}$ is a function, then an f-flow of G is a function $\phi: G \rightarrow \mathbb{R}$ such that

- For every edge $(x, y) \in G, \phi(x, y)=-\phi(y, x)$, and
- For every vertex $x \in X$,

$$
f(x)=\sum_{(x, y) \in G} \phi(x, y)
$$

Flows in graphs

Suppose G is a graph (symmetric irreflexive relation) on a vertex set X. If $f: X \rightarrow \mathbb{R}$ is a function, then an f-flow of G is a function $\phi: G \rightarrow \mathbb{R}$ such that

- For every edge $(x, y) \in G, \phi(x, y)=-\phi(y, x)$, and
- For every vertex $x \in X$,

$$
f(x)=\sum_{(x, y) \in G} \phi(x, y)
$$

In finite graph theory, flows are usually studied with a single source and sink (e.g. in the max-flow min-cut theorem). For finite graphs, the above type of flow problem is equivalent to one with a single source and sink (by adding a "supersource" and "supersink" to the graph).

Flows in graphs

Suppose G is a graph (symmetric irreflexive relation) on a vertex set X. If $f: X \rightarrow \mathbb{R}$ is a function, then an f-flow of G is a function $\phi: G \rightarrow \mathbb{R}$ such that

- For every edge $(x, y) \in G, \phi(x, y)=-\phi(y, x)$, and
- For every vertex $x \in X$,

$$
f(x)=\sum_{(x, y) \in G} \phi(x, y)
$$

In finite graph theory, flows are usually studied with a single source and sink (e.g. in the max-flow min-cut theorem). For finite graphs, the above type of flow problem is equivalent to one with a single source and sink (by adding a "supersource" and "supersink" to the graph). For infinite graphs, there is not such an equivalence. E.g. there are "Ponzi schemes" on infinite graphs.

Flows and equidecompositions

For the rest of the proof, let G be the graph with vertex set \mathbb{T}^{k} where $x, y \in \mathbb{T}^{k}$ are adjacent if there is $g \in \mathbb{Z}^{d}$ such that $g \cdot x=y$ where $|g|_{\infty}=1$.

Flows and equidecompositions

For the rest of the proof, let G be the graph with vertex set \mathbb{T}^{k} where $x, y \in \mathbb{T}^{k}$ are adjacent if there is $g \in \mathbb{Z}^{d}$ such that $g \cdot x=y$ where $|g|_{\infty}=1$.

Proposition

A and B are a-equidecomposable with Borel pieces iff there is a bounded Borel integer-valued $\chi_{A}-\chi_{B}$-flow of G.
$\rightarrow: A$ and B are a-equidecomposable with Borel pieces iff there is Borel bijection $\theta: A \rightarrow B$ and a finite set $S \subseteq \mathbb{Z}^{d}$ such that $\forall x \in A \exists g \in S(\theta(x)=g \cdot x)$.

Flows and equidecompositions

For the rest of the proof, let G be the graph with vertex set \mathbb{T}^{k} where $x, y \in \mathbb{T}^{k}$ are adjacent if there is $g \in \mathbb{Z}^{d}$ such that $g \cdot x=y$ where $|g|_{\infty}=1$.

Proposition

A and B are a-equidecomposable with Borel pieces iff there is a bounded Borel integer-valued $\chi_{A}-\chi_{B}$-flow of G.
$\rightarrow: A$ and B are a-equidecomposable with Borel pieces iff there is Borel bijection $\theta: A \rightarrow B$ and a finite set $S \subseteq \mathbb{Z}^{d}$ such that $\forall x \in A \exists g \in S(\theta(x)=g \cdot x)$.

To construct a flow, for each $x \in A$ add 1 unit of flow to each edge along the lex-least path from x to $\theta(x)$.

Constructing an equidecomposition from a flow

\leftarrow : Suppose now ϕ is a Borel $\chi_{A}-\chi_{B}$ flow of G bounded by c.

Constructing an equidecomposition from a flow

\leftarrow : Suppose now ϕ is a Borel $\chi_{A}-\chi_{B}$ flow of G bounded by c.
Find a Borel tiling of each orbit by rectangles of side length $\approx N$. Each tile has roughly $\lambda(A) N^{d}$ points of A and B, and the flow over the boundary of the tile is $\leq O\left(c N^{d-1}\right)$. Using discrepancy, if N is sufficiently large, there are more points of A and B in every tile than maximum flow out of the boundary of the tile.

Constructing an equidecomposition from a flow

\leftarrow : Suppose now ϕ is a Borel $\chi_{A}-\chi_{B}$ flow of G bounded by c.
Find a Borel tiling of each orbit by rectangles of side length $\approx N$. Each tile has roughly $\lambda(A) N^{d}$ points of A and B, and the flow over the boundary of the tile is $\leq O\left(c N^{d-1}\right)$. Using discrepancy, if N is sufficiently large, there are more points of A and B in every tile than maximum flow out of the boundary of the tile.

Now construct a Borel bijection from A to B witnessing equidecomposability. Suppose R, S are adjacent tiles. If

$$
\sum_{(x, y) \in G: x \in R \wedge y \in S} \phi(x, y)>0
$$

map this many points of $A \in R$ to points of $B \in S$. If the quantify is negative, map this many points of $B \in R$ to $A \in S$.

Constructing an equidecomposition from a flow

\leftarrow : Suppose now ϕ is a Borel $\chi_{A}-\chi_{B}$ flow of G bounded by c.
Find a Borel tiling of each orbit by rectangles of side length $\approx N$. Each tile has roughly $\lambda(A) N^{d}$ points of A and B, and the flow over the boundary of the tile is $\leq O\left(c N^{d-1}\right)$. Using discrepancy, if N is sufficiently large, there are more points of A and B in every tile than maximum flow out of the boundary of the tile.

Now construct a Borel bijection from A to B witnessing equidecomposability. Suppose R, S are adjacent tiles. If

$$
\sum_{(x, y) \in G: x \in R \wedge y \in S} \phi(x, y)>0
$$

map this many points of $A \in R$ to points of $B \in S$. If the quantify is negative, map this many points of $B \in R$ to $A \in S$. Since ϕ is a $\chi_{A}-\chi_{B}$-flow, after doing this the same number of points of A and B remain in each tile. Biject them to finish the construction.

How to construct tilings

An independent set in a graph G is a set of vertices where no two are adjacent.

Theorem (Kechris, Solecki, Todorcevic, 1999)
If G is a locally finite Borel graph, then there is a Borel maximal independent set for G.

How to construct tilings

An independent set in a graph G is a set of vertices where no two are adjacent.

Theorem (Kechris, Solecki, Todorcevic, 1999)
If G is a locally finite Borel graph, then there is a Borel maximal independent set for G.

Let $G \leq n$ be the graph on \mathbb{T}^{k} where x, y are adjacent if $d_{G}(x, y) \leq n$. Let C be a Borel maximal independent set for $G \leq n$. Use the element of C as center points for "tiles" of G.

How to construct tilings

An independent set in a graph G is a set of vertices where no two are adjacent.

Theorem (Kechris, Solecki, Todorcevic, 1999)

If G is a locally finite Borel graph, then there is a Borel maximal independent set for G.

Let $G^{\leq n}$ be the graph on \mathbb{T}^{k} where x, y are adjacent if $d_{G}(x, y) \leq n$. Let C be a Borel maximal independent set for $G \leq n$. Use the element of C as center points for "tiles" of G.

If we use these center points to make "Voroni cells", the resulting tiling suffices. Gao-Jackson (2015) give a more complicated construction to make rectangular tilings.

A sketch of our proof

1. We construct a real-valued bounded Borel $\chi_{A}-\chi_{B}$-flow of G by giving an explicit algorithm for finding such a flow.

A sketch of our proof

1. We construct a real-valued bounded Borel $\chi_{A}-\chi_{B}$-flow of G by giving an explicit algorithm for finding such a flow.
2. We show that given any real-valued Borel f-flow of G, we can find an integer valued Borel f-flow which is "close" to the real-valued one.

A sketch of our proof

1. We construct a real-valued bounded Borel $\chi_{A}-\chi_{B}$-flow of G by giving an explicit algorithm for finding such a flow.
2. We show that given any real-valued Borel f-flow of G, we can find an integer valued Borel f-flow which is "close" to the real-valued one.
3. We finish by using the proposition we've proved above: there's a Borel equidecomposition iff there is a bounded Borel $\chi_{A}-\chi_{B}$-flow.

Finding a real-valued bounded flow

Finding a real-valued bounded flow

For every $i>0$, let $\pi_{i}: \mathbb{Z}^{d} /\left(2^{i} \mathbb{Z}\right)^{d} \rightarrow \mathbb{Z}^{d} /\left(2^{i-1} \mathbb{Z}\right)^{d}$ be the canonical homomorphism. This yields the inverse limit
where elements of $\hat{\mathbb{Z}^{d}}$ are sequences $\left(h_{0}, h_{1}, \ldots\right)$ such that $\pi_{i}\left(h_{i}\right)=h_{i-1}$ for all $i>0$.

Finding a real-valued bounded flow

For every $i>0$, let $\pi_{i}: \mathbb{Z}^{d} /\left(2^{i} \mathbb{Z}\right)^{d} \rightarrow \mathbb{Z}^{d} /\left(2^{i-1} \mathbb{Z}\right)^{d}$ be the canonical homomorphism. This yields the inverse limit

$$
\hat{\mathbb{Z}^{d}}=\lim _{i \geq 0} \mathbb{Z}^{d} /\left(2^{i} \mathbb{Z}\right)^{d}
$$

where elements of $\hat{\mathbb{Z}}^{d}$ are sequences $\left(h_{0}, h_{1}, \ldots\right)$ such that $\pi_{i}\left(h_{i}\right)=h_{i-1}$ for all $i>0$.

For each $h \in \hat{\mathbb{Z}}^{d}$ and $x \in \mathbb{T}^{k}$, we give an explicit construction $\phi_{x, h}$ of a flow of the connected component of x. However, we cannot pick a single x in each orbit to be a "starting point" for this construction (since this would be a nonmeasurable Vitali set).

Finding a real-valued bounded flow

For every $i>0$, let $\pi_{i}: \mathbb{Z}^{d} /\left(2^{i} \mathbb{Z}\right)^{d} \rightarrow \mathbb{Z}^{d} /\left(2^{i-1} \mathbb{Z}\right)^{d}$ be the canonical homomorphism. This yields the inverse limit

$$
\hat{\mathbb{Z}}^{d}=\lim _{i \geq 0} \mathbb{Z}^{d} /\left(2^{i} \mathbb{Z}\right)^{d}
$$

where elements of $\hat{\mathbb{Z}}^{d}$ are sequences $\left(h_{0}, h_{1}, \ldots\right)$ such that $\pi_{i}\left(h_{i}\right)=h_{i-1}$ for all $i>0$.

For each $h \in \hat{\mathbb{Z}}^{d}$ and $x \in \mathbb{T}^{k}$, we give an explicit construction $\phi_{x, h}$ of a flow of the connected component of x. However, we cannot pick a single x in each orbit to be a "starting point" for this construction (since this would be a nonmeasurable Vitali set).

The construction is such that if $g \in \mathbb{Z}^{d}$, then $\phi_{x, h}=\phi_{g \cdot x,-g+h}$. Hence, the average value of this construction is invariant of our starting point ($h \mapsto-g+h$ is measure preserving):

$$
\int_{h} \phi_{x, h}=\int_{h} \phi_{g \cdot x,-g+h}=\int_{h} \phi_{g \cdot x, h}
$$

In the last lecture, we'll discuss how to turn a real-valued flow of G into an integer-valued flow. This step uses:

- the Ford-Fulkerson algorithm in finite combinatorics.
- work of A. Timár on boundaries of finite sets in \mathbb{Z}^{d}.
- very recent work of Gao, Jackson, Krohne and Seward on hyperfiniteness of free Borel actions of \mathbb{Z}^{d}.

